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We show that if the Kraichnan theory of fully developed turbulence holds, then
the Landau–Lifschitz degrees of freedom is bounded (up to a logarithmic term)
by G1/2, where G is the Grashof number.
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The incompressible Navier–Stokes equations (NSE) with periodic bound-
ary conditions on [0, L]2 can be written as

du
dt

+nAu+B(u, u)=f (1.1)

where A=−D, B(u, v)=P((u · N) v) with P the Helmholtz–Leray projec-
tion onto divergence free functions, and f is a body force. We assume that
f=Pō f, where

Pou= C
o0 |k| [ o

ûke io0 k · x, for u(x)= C
k ¥ Z

2
ûke io0 k · x,

with o0=2p/L,



and that ō/o0 [ C0. Critical wave numbers og, os, are defined through the
generalized time averages (see ref. 1)

g=
n

L2 O|Au|2P, E=
n

L2 O|A1/2u|2P as og=1 g

n3
21/6

and os=1g

E
21/2

,

(1.2)

where | · | is the L2-norm.
It is shown in ref. 1 that if the Kraichnan theory of fully developed

turbulence (2) holds for the NSE, then

1og

o0

22

[ 1 1
2p
22/3 51os

ō
22

− 16
−1/3

G2/3, (1.3)

where G=|f|/(no0)2 is the Grashof number. The ratio (og/o0)2 is the
Landau–Lifschitz asymptotic degrees of freedom, which is shown in ref. 3
to be an upper bound on dimF(A), the fractal dimension of the global
attractor (4) (up to a logarithmic term in og/o0)). We also show in ref. 1 that
if the Kraichnan theory holds, then

os ’ og(ln og/o
¯

i)−1/2, (1.4)

where o
¯

i is the lower endpoint of the inertial range. Using (1.4) in (1.3)
leads in ref. 1 to the somewhat surprising estimate (og/o0)2 M G4/7 (up to
a logarithmic term). This undercuts the previous best estimate (og/o0)2

M G2/3 (up to a logarithmic term), made in ref. 3 without assuming turbu-
lence.

The power 4/7 does not, however, fully exploit the relations (1.4) and
(1.3). In fact, we show in the next few lines that (og/o0)2 M G1/2 (up to a
logarithmic term).

Use (1.4) in (1.3) to obtain

1og

o0

26 51og

o0

22 1o0

ō
22 1 ln

og

o
¯

i

2−1

− 16 M G2.

Apply the estimate og/o0 [ G1/3 from ref. 5 to reach

1og

o0

28 1o0

ō
22 1 ln

og

o
¯

i

2−1

M G2+1og

o0

26

[ 2G2,
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from which immediately follows

1og

o0

22 1 ln
og

o
¯

i

2−1/4

M 1 ō

o0

21/2

G1/2. (1.5)
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